
IT Security History &
Architecture

(How Did We Get Into This Mess?)

by

Dr. Steve G. Belovich

CEO, IQware, Inc.
330-659-6300

www.IQware.us
Steve.Belovich@IQware.us

5/18/10

C2010 Dr. Steve G. Belovich 1 of 20

http://www.IQware.us/

1.0 IT Security Overview

1.1 Recent Security Issues

The past year has witnessed an amazing number of articles, reports, seminars and news stories
about successful hacking attempts and the lack of data and/or network security. The GAO
recently reported that:

“Despite indications that agencies have improved their compliance with parts of
the Federal Information Security Management Act (FISMA), many major
agencies still consider their information security controls a significant deficiency
or material weakness” - GAO May 2009

Even “Mighty Google” is not immune and is a target, as this article
shows:

“Ever since Google disclosed in January (2010) that
Internet intruders had stolen information from its
computers, the exact nature and extent of the theft has
been a closely guarded company secret. But a person
with direct knowledge of the investigation now says that
the losses included one of Google’s crown jewels, a
password system that controls access by millions of users
worldwide to almost all of the company’s Web services,
including e-mail and business applications.

The theft began with an instant message sent to a Google employee in China
who was using Microsoft's Messenger program, according to the person with
knowledge of the internal inquiry, who spoke on the condition that he not be
identified. By clicking on a link and connecting to a “poisoned” Web site, the
employee inadvertently permitted the intruders to gain access to his (or her)
personal computer and then to the computers of a critical group of software
developers at Google’s headquarters in Mountain View, Calif. Ultimately, the
intruders were able to gain control of a software repository used by the
development team.” - NY Times, April 19, 2010

A common thread that runs through these articles is the network. Invariably, the focus is always
on intrusion detection and how the network is configured. Firewalls, anti-virus software and
anti-spyware are front-and-center as are algorithms for identifying intrusions. Perimeter security
has been the “accepted” defensive approach and the three main hacking steps of scanning,
footprinting and enumeration are given little attention. Also ignored are the vulnerabilities that
are built-in to the TCP/IP protocol itself which permits challenge and response without
authentication.

C2010 Dr. Steve G. Belovich 2 of 20

 What, Me Worry?

Scant attention is paid to the serious vulnerabilities of software assets, e.g., the source code base,
“make” files, module management systems, libraries, etc. due to poorly-planned access
mechanisms and deployment. After all, hackers gained access to Google's code base through a
web browser which, in retrospect, seems a huge oversight.

What is totally ignored in analyzing IT security issues is
the fundamental engineering & architecture of the IT
systems that were penetrated and what can - or should -
be done about that. This is at the heart of the “security
problem” and also represents a key rate-limiting step
preventing much-needed advances in IT systems'
operational capability.

Another problem is confusing IT system architecture and
engineering with mere programming or coding.
Architecture and engineering refers to how and where
information is acquired, archived, analyzed, transformed,
distributed and presented. Architecture and engineering
also govern how information is protected and how
access is granted, controlled and monitored. Coding is
merely a vehicle for doing that.

Given all this media attention, what else could be said about data/network/software security that
has not already been said? Well, actually, a lot. In the rush to point out the vulnerabilities,
threats, exposures and liabilities scant attention has been given to the real fundamental issues: 1)
what the “security problem” really is, 2) what caused it, 3) why you are not safe no matter how
many “official NIST certifications” you may have and 4) what actions should you take.

1.2 What’s Really The “IT Security Problem”?

The “ITSP” (IT Security Problem) is a generic term for the problems that
arise when trying to achieve a set of operation-related goals. There are
six members of that set:

1. IT systems should do exactly what they are intended to do
2. IT systems should operate when intended to do so
3. IT systems should work on behalf of duly-authorized personnel
4. IT systems should NEVER do what is NOT intended
5. IT systems should NEVER operate when NOT intended
6. IT systems should NEVER work on behalf of NON-authorized

personnel

The ITSP is much more than a mere “network protection” issue. That is a major reason why

C2010 Dr. Steve G. Belovich 3 of 20

attempts to secure IT systems by merely securing the network via firewalls and intrusion
detection schemes do not work very well – they only focus on the network and ignore everything
else. It's also another reason why following every guideline and meeting various certifications
will not make you invulnerable and may, in fact, leave you even more exposed because the root
causes of IT system vulnerability are not addressed.

So, is this the real security problem? Not entirely. The real security
problem is bad software design, poor implementation and the mass
deployment of critical tasks onto fundamentally non-secure
platforms. Note that this problem has little to do with specific “software
tools” or network designs. Rather, it deals with the deeper issues of how
we engineer software, the qualifications of who engineers the software
and how we select and deploy IT systems and software to run our
organizations.

1.3 Why Understand The History of IT Security?

Understanding the history of IT security explains why we are in this situation of seemingly
never-ending vulnerability to data theft, cyber attacks and hacking. It also significantly impacts
our “go-forward” options due to the inertia of installed base and existing infrastructures.
Ignorance is always costly, so knowing the root cause(s) helps us prevent repeat errors and
guides us to effective, long-term solutions. If the problem is understood, a solution is possible.
Conversely, if the real problem is not understood, a real solution is impossible.

1.4 Security Standards and Certifications

Another big issue is certification. Because the need
for security is so evident and the lack of security is
so prevalent, various standards and certifications
have arisen to “prove” certain levels of security. The
DoD (Department of Defense), the NIST (National
Institute of Standards and Technology), NIAP
(National Information Assurance Partnership) and
the ISO (International Standards Organization) have
all issued and/or endorsed standards for system
security. The two main standards are DoD 5200.28
(the so-called “Orange Book) and ISO 15408, shown
below.

C2010 Dr. Steve G. Belovich 4 of 20

C2010 Dr. Steve G. Belovich 5 of 20

1.5 The “Weak Spot” of Security Standards and Certifications

The problem with all of these standards and certifications is that they are imperfect and
incomplete. The big flaw with the ISO 15408 standard is that it only focuses on the “TOE”
(Target of Evaluation). What this means is that a system can have the highest rating and still be
vulnerable, since the vulnerable aspect of the system was neither tested nor evaluated. This is
not good.

The DoD standard does mandate some system structure so there is a lot more confidence in using
that standard. However, that standard is incomplete and difficult to apply. Further, few
organizations are really skilled at application of these standards and there is a lot of politics in the
process. Consequently, such certifications are more for legal defense (e.g., for defense
against negligence) than they are for actual cyber defense.

C2010 Dr. Steve G. Belovich 6 of 20

2.0 A Very Quick History of Computer & O/S Technology

2.1 The 1950s

In the 1950s, IBM dominated the landscape and hardware ISAs (Instruction Set Architectures)
were changing constantly which meant that the “operating software” (precursor to the operating
system) was redesigned with each new machine. The concept of an operating system (O/S) was
introduced and it was usually an “add-on” because the profits came from hardware sales. The
O/S handled single-user and/or batch operations and provided very simple file systems and
related file services. The need for security did not exist because there was no remote access and
physical security of the building and computer hardware equated to IT system security. Physical
access meant that you were authorized – simple and effective.

2.2 The 1960s and 1970s

In the 1960s and early 1970s, computing hardware was moving from
“one-at-a-time” to automated production. Operating Systems (O/S)
concepts were evolving and the concept of microprogramming was
introduced by IBM in 1960. So-called “mini-computers” (e.g., PDP-
8, PDP-12, and the PDP-11 series) were introduced by DEC in the
mid 1960s and early 1970s. These machines fit into 19-inch racks,
were air-cooled and could run on 208V (three-phase), 220V (bi-phase)
or 120V single-phase. They used 7400 series TTL logic (SSI/MSI
chips) and could be mass produced (I actually own a few of these
machines which I repaired as a grad student over 25 years ago).

During this time, O/S technology made the leap from single-user/batch to multi-user and time-
sharing. This leap – and it was a big one – meant that hardware & software mechanisms had to
be invented to provide protection so that no user's program could “escape from its playpen” and
interfere with the operation of other users' programs or the system itself. Thus the concept of
security in the form of memory protection was introduced at both the hardware and software
levels. The concept of memory management was also introduced which created “virtual
memory” which could be allocated to different regions of physical memory “on demand”.

2.3 Programmers Are Born

These concepts allowed the logical (and later the physical) segregation of programming from
hardware design. People writing the instructions (the “code” or the “software”) for the computer
did not need to know exactly what the machine really did or how it really did it. Thus,
“programmers” were created who were able to do their job without being hardware engineers

C2010 Dr. Steve G. Belovich 7 of 20

and the field of “Computer Science” was born. This field originated out of electrical engineering
and mathematics, but its modern incarnation has forgotten large portions of those disciplines.

Further, the relatively small installed base of machines allowed for a lot of experimentation so
that good ideas could be brought to market and bad ideas were quickly buried. Multi-user
protection mechanisms improved, memory management got “smart” and operating system
services expanded greatly.

2.4 Compilers Get Smart Because Hardware is Smarter

Compilers also got smart, with improved optimization techniques that
took advantage of the tremendous advances in hardware technology.
Some of those hardware advances include multi-level set associative
cache RAM, pipelined CPUs, instruction pre-fetching, score-boarding,
“eager” branch execution, multi-port I/O and the migration of more
functionality into the firmware and/or the hardware to free up the O/S
from the details of disk management, etc.

In the late 1970s, the crippling limitation of address space was aggressively addressed by DEC
and IBM when they expanded to 32bit (VAX architecture) and 44bits (ESA architecture)
respectively.

Sixty-four-bit architectures came in 1992 with the introduction of the DEC Alpha 21064
microprocessor. Others followed including Intel and IBM. Compilers lagged but eventually
caught up with new, larger data types including 64-bit integers, 128-bit floating point numbers
and expanded virtual memory address space management.

2.5 Installed Base Grows – Creating Dependency

Meanwhile, the installed base of computers was exploding at a phenomenal rate. Further,
businesses were becoming totally dependent upon these machines and became less tolerant of
shutdowns for any reason – including new hardware installation and upgrades. Software
applications were being written and there was little organization or thought given to what do we
do in a year or two when we have to expand our capability? No one really thought that one
through because that was not budgeted – very scary.

2.6 Installed Base Impedes Technological Advancement

What this meant was that expansion in fundamental computing
technology (e.g., the introduction of newer and better Instruction Set
Architectures) actually slowed down because the sheer size of the

C2010 Dr. Steve G. Belovich 8 of 20

installed software and hardware base severely limited new experimentation and discovery.
Although new fundamentally better hardware and software designs could be brought to market
quickly, the market simply could not absorb them. Shutdowns for any reason became
intolerable, whether it be for maintenance or a complete new machine and software applications.

So, the computer industry continually improved the hardware & software, but the Instruction Set
Architectures (ISAs) were largely preserved. The sheer size of the installed software base also
prevented rapid change, no matter how “good” that change might have been for the industry.

2.7 The Economics of A New ISA & O/S Does Not Compute

The economics of the installed based has prevented major innovations to ISAs during the past
twenty-five years. This “slow down” was a business necessity to preserve existing operations for
customers while still selling them new hardware and software. It's a real tough sell when you
have to tell your customers to throw everything out and buy all new and different stuff -
especially when you sold them the stuff that you're now telling them to toss out!

The ISA is essentially the interface between hardware and software and thus had to remain static
for upward compatibility purposes. There has been little innovation in this critical area for
twenty-five years. There are too many economic barriers preventing the creation and
deployment of the key hardware components required for a secure system, such as support for
multi-mode instruction set execution and duplicate register sets.

Any fundamentally new O/S would require the purchase and deployment of an entire set of new
apps - which economically simply could not happen. To avoid alienating the customer base,
changes had to be made slowly (if at all) to
preserve existing architectures. That meant –
and continues to mean - uncomfortable trade-
offs between capability and what could be sold.
Experimentation and invention in this critical
area cannot proceed economically because
there is too much already built on top of what is
currently deployed. In short, while some
evolution is still happening, revolution has
almost ceased.

C2010 Dr. Steve G. Belovich 9 of 20

3.0 Secure System Requirements: The Reference Monitor

3.1 Requirements For A Secure System

In parallel with this explosion in hardware capability, security concepts also expanded, backed
by lots of research effort. The net result of the research was that “finding and patching” security
“holes” was not the way to go. Security “leaks” could not be plugged because there was no
assurance that there would not be another undiscovered “leak”. There was no way to be sure that
all possible IT “doors” were properly “guarded”.

Rather, security had to be designed in to an operating system (and into an IT system) from the
ground up. Note that security had two main operational components: (1) multi-user protection
and (2) preventing unauthorized accesses.

A lot of research was done in the 1960s to figure out how to deal with multi-user protection and
preventing unauthorized system access. The results of this research revealed the necessary
components of a secure, trustworthy system. These components are summarized below.

1) Policy
Security Policy - System must enforce a well-defined security policy.
Marking - System must associate all objects with access control labels (sensitivity & access
modes).

2) Accountability
Identification - System must identify individuals and their various authorizations in a secure
manner.
Audit Trail - System must keep & protect audit trail so actions may be traced to responsible
party.

3) Assurance
Evaluation - System must have hardware/software mechanisms that can be independently
evaluated to assure that policy & accountability are enforced.
Continuous Protection - System must continuously protect trusted mechanisms that enforce
policy & accountability from tampering.

3.2 The Reference Monitor

As part of these requirements for a secure system, the “Reference Monitor” concept was
introduced. This was a logical structure built into the lowest level of the Operating System (O/S)
which adjudicated the access of any subject to any object. The Reference Monitor is shown in
the diagram below:

C2010 Dr. Steve G. Belovich 10 of 20

The reference monitor mediates all accesses of objects by subjects. With properly defined
subjects and objects, the reference monitor (RM) provides a trusted – and verifiable - security
policy enforcement mechanism. The reference monitor, combined with the principles of a secure
system architecture, can provide trustworthy, verifiable enforcement of a security policy.

3.3 Where The Reference Monitor Is (or Is Not) Used

Some operating systems incorporated this concept at the lowest layer, right above the FLIH (first
level interrupt handler). Most did not. The reason was the installed base of existing systems
prevented radical modifications to the underlying software structures. Adding the reference
monitor would have been a very radical modification, requiring a new file system. Simply
put, the size and inertia of the installed base prevented the fundamental re-engineering and re-
deployment required for a truly secure O/S.

Many institutions were very resistant to change because they had to operate 24-by-7 and could
not simply shutdown, reinstall a new O/S, install new applications and reboot. So, although a
solution to security was known and understood, simple economics prevented its widespread
adoption.

C2010 Dr. Steve G. Belovich 11 of 20

4.0 The Desktop Revolution (how RAM & disks got really cheap)

4.1 Consumer Market Economics Limits Design Choices

While these advances were going on in the mainframe and mini world, the
same thing was happening in the PC world – only far worse. The
microprocessor (which first appeared in 1970 with the TI 4040) allowed for
the cheap introduction of home computers (e.g., TRS-80, Apple in 1976
and the IBM PC in 1980).

Cost dominated the retail market - as it still does. The cheapest, simplest design is the one that
wins. Security, performance, etc. are all secondary to cost. The O/S was made simple and dumb
with bare minimum support for a file structure. In fact, QDOS (Quick 'n' dirty Disk Operating
System) was the forerunner of DOS which led to Windows 3.0, Windows 3.11, NT 3.51, NT4.0,
W2K, W-XP, etc. Of course, CP/M (Computer Program/Monitor) was out there in the early
1980s and many concepts embodied within DOS were taken from CP/M.

Because early PCs had to be cheap, they were necessarily extremely limited in capability and
were initially 8-bit microprocessor-based (the Motorola 6502 for Apple and the Intel 8080 for the
TRS-80). So nearly all of the advances in mainframe and mini technologies, e.g., interleaved
RAM, hierarchical storage, set associative cache RAM, memory management, multi-port I/O and
multi-threaded applications were deliberately eliminated from the design of the PC. They had to
be for cost considerations.

Applications (Apps) were also simple and dumb and carried with them whatever run-time
functions were needed. Apps also had to handle their own memory management because the O/S
did nothing there. Early desktop O/S's (e.g., early versions of DOS) did not even have a print
spooler. When you told an IBM PC to print in 1983, then that's exactly what it did - and nothing
else. You had no control over the machine except to type CTRL-C and abort the print job.

4.2 System Security Deliberately Eliminated in PCs

When the desktop operating system (O/S) was designed, all of the
security concepts learned in the mainframe/mini world were tossed
out because they were not required for the intended use of a home
computer. The protection mechanism was physical: lock it up. In
the early 1980s, there were metal frames made to hold early PCs
and locks on the case to prevent physical access to the innards.
Such mechanisms were easily defeated, but tampering would leave
a physical trace.

C2010 Dr. Steve G. Belovich 12 of 20

The essential features of multi-user support, multi-user protection and system security
were deliberately eliminated from the early desktop O/S design. They were not needed for
early PCs which were designed for the home market where there would be one user at a time and
security was not a concern. Price and convenience drove the design and it still does today. Why
take up extra RAM, disk and CPU cycles when the market did not need it, did not want it and
would not pay for it?

4.3 Early Security Focused on Anti-Piracy

In the 1980s, “software security” became a concern because of
software piracy or illegal software duplication. The big “PC
Security” issue was focused on preventing the user from doing
something to the “outside (e.g., illegally copying an application).
Now, PC security tries to stop the “outside” from doing something to
the user!

On the application side, “dongles” or hardware keys were used to ensure that the application
would only run on the intended hardware. Of course, such devices did nothing for data
protection nor for ensuring that the application would run properly, but those vulnerabilities were
not considered threats at that time. The main purpose of hardware keys was to thwart copying of
software and its illegal use on different hardware.

Further, the technology of the time helped prevent the copying of applications because CD/DVD
RW devices did not exist and jump drives were only a dream.

4.4 Dial-Up Networking

The concept of networking home computers was unanticipated in the late 1970s and early 1980s.
Networking originally consisted of remote users on “dumb terminals” using modems to access a
bigger machine. The Bell 103 modem standard was the first and then Hayes became the
dominant player and the famous “AT” modem commands became the de facto modem control
standard. This allowed control and data to be shared on the same link, a concept called “in-band
signaling”.

Later, PCs replaced the “dumb terminal” via terminal emulation
programs but access was still limited to dial-up connections to a larger
machine. In the late 1970s and early 1980s, hooking up two PCs via
some sort of network had no apparent purpose. PCs still had single-
task operating systems (e.g., DOS 2.3) and Windows 3.1 was still in
the planning stages. Robust network protocols were still experimental,
the “physical layer” of the OSI (Open Systems Interconnect) model
was still evolving and no stable networking technology existed.

C2010 Dr. Steve G. Belovich 13 of 20

4.5 The Invention of the Internet

In parallel with this was the development of the Internet, which was really born out of Dr.
Leonard Kleinrock's work at MIT in the early 1960s, along with DARPA (Defense Advanced
Research Projects Agency). That work was started in the 1960s and grew throughout the 1970s.
It was called DARPANET at first and later on the “D” was dropped and became ARPANET.
General Electric was also involved with GE Information Services Network, as was TYMNET,
which were terminal-oriented and supported both interactive and batch processing.

The main networking goal in the early days was simply getting it to work! Early protocols were
simple and some complexity was added later on to prevent errors such as lockups, and other
early “denial of service” situations that had a variety of causes, including a lack of reassembly
buffers for lengthy messages. The concept of a “store and forward” network was explored and
refined. This involved breaking up messages into manageable chunks called “packets”,
transmitting them over the network and then reassembling them at the receiving point.

4.6 Early Network Protocols Ignore Security

The engineering emphasis on those early network protocols was ease
of connectivity, maximum utilization of expensive bandwidth and the
reliability of the connection. Getting the entire network to operate
correctly was the goal. All else was secondary. Security was not an
issue and was largely ignored. The technologies used were intended
to be convenient and easy-to-use so that hooking up to the network
would be a quick and easy thing to do. The two main protocols that
arose were TCP (Transmission Control Protocol) and IP (Internet
Protocol). These were eventually merged and became what we now
know as TCP/IP.

Security was not required for early networks because access was physically controlled. Also, the
built-in access control mechanisms of the mainframe or central machine were well-established,
well-understood and were the “guardians of the gate” to prevent unauthorized access. The
network simply presented the access request to the mainframe and it had the responsibility of
granting or preventing access. That worked fine for that time.

4.7 PC Operating Systems Had No Secure Foundation

While networking was improving, the initial O/S (Operating System) designs for PCs discarded
or ignored the “mainframe/mini” concepts of shared resources, multi-user access, memory
protection, multi-layer operation modes (e.g., kernel, executive, supervisor, user), user isolation,
file-level access protection, ACLs (Access Control Lists), privileges, quotas, etc.

C2010 Dr. Steve G. Belovich 14 of 20

These engineering concepts were essential for a secure system because they allowed many users
to share the computing resources (CPUs, RAM, disks, etc.) without interference. One user's
mistakes did not percolate over into another user. The operating system handled the all the
housekeeping and ensured that the entire computing system operated correctly even if an
individual user did something stupid. The mainframe O/S was designed to detect and prevent
that from happening and these technologies were maturing.

These critical engineering concepts were not included in the architecture of the home computer.
Such technologies were very costly, memory-intensive, CPU-intensive and served no logical
purpose for a home computer. More importantly, including these concepts in the O/S served no
economic purpose for the home computer. Price always
drives the consumer market and there was simply no
demand for such features.

The problem is that such features really need to be
engineered in from the beginning in order to work
properly. Adding them afterward is nearly impossible - and
it has not occurred yet in the PC market. We are now living
with the consequences of that.

4.8 Networking PCs Requires A Secure O/S

Once networking was expanded to include local networks of personal computers, then access
control for personal computers became an issue. It now mattered who could access which
computer and when they could do that. It now mattered who could access what specific resource
of what machine and when. Privileges (what you're allowed to do) and quotas (how much of
something you're allowed to use) now became important.

So, the personal computer now needed a secure
foundation and it just wasn't there. Usernames, passwords
and some limited permission management were the best that
could be done. However, such access control mechanisms
were crude and easily defeated. There was no underlying
security mechanism for the PC operating system and no easy
way to add it either. The size of the installed base and the
economics of the consumer market prevented the much-
needed re-engineering of the desktop's operating system.
Why bother to create it if you cannot sell it?

As an example, just adding proper “object marking” (a key
requirement for a secure system) would require a brand new file system which would force the
replacement of the entire installed base of PCs and software. By way of a benchmark, that
installed base is about a trillion dollars.

C2010 Dr. Steve G. Belovich 15 of 20

4.9 The Fatal Flaw: Deploying Critical Stuff On A PC

Although the weaknesses of the desktop operating system were well-known early on, IT
managers found the technology to be very attractive, convenient, easier to understand and
cheaper. Mainframes and minis cost too much and required constant “care and feeding”. Worse,
maintenance contracts were expensive and it took too long for someone to arrive when
something malfunctioned. After all, if it worked at home, it should be fine for the enterprise,
right? “Scale-up” just seemed easy.

So, PCs migrated from the price-driven consumer market to the enterprise. Critical tasks such as
accounting, payroll, invoicing and other operations were taken off of the mini-computer or
mainframe and placed on the desktop. It was cheaper, more convenient and there were no
monthly computer maintenance fees to pay. All in all, it looked like a smart move for business.

The problem with that move was that the requirements of a business are far different than those
for an individual user. As business needs expanded, the demands on the desktop grew
accordingly. Unfortunately, the desktop was not engineered to support those expanded demands.
Rather, the desktop was engineered to meet the needs of the consumer market which wanted the
machine for entertainment purposes, web surfing and social networking rather than for
“traditional computing”.

Multimedia, audio processing, video handling, interactive gaming and the like were all critical
requirements for the consumer market but did little for the business market. In fact some of the
multimedia features actually caused new problems in the O/S as new releases came out.

 Although the business market cared about that, the consumer market did not. Sales-wise,
consumer PC sales outnumber business PC sales by nearly 1000-to-1, so that part of the market
controls everything else – and it still does today.

Clearly, business requires more secure systems but the marketplace is not providing it because
it's listening to the consumer side. Truly effective security is just not possible without
fundamentally changing the desktop. That can't happen due to the size of the installed
base and the corresponding economics that prevent change. So here we sit!

C2010 Dr. Steve G. Belovich 16 of 20

5.0 Sidebar #1: Evil Software Development

While the PC revolution was occurring in hardware, software
was undergoing a revolution as well. The demand for
applications grew far faster than the ability of the market to
deliver them. This high demand put an unbelievable time
pressure on software suppliers and systems integrators to get the
job done on schedule – regardless of the number of bugs. Time-
to-market was (and remains) more important than getting it right.

Software, which was formerly done by engineers who really
knew and understood what the hardware could do, was now done
by programmers who had little understanding of what the
compiler, linker, run-time system and underlying hardware
actually did with the source code that they wrote. During the
past 20 years, this dichotomy has gotten far worse.

There are no universal software quality, reliability and safety standards. This is in sharp contrast
to consumer products where safety standards and testing laboratories are in abundance. Software
development and purchasing remains very much “caveat emptor”.

Complicating this issue is the fact that the science of software is in its infancy. We still do not
know how to produce large pieces of software that are consistently bug-free. Software is largely
handcrafted and trial-and-error is the rule (what are Beta sites for?). The plethora of platforms
and development tools prohibit universal standardization. And with good reason - whatever
platform and operating system are chosen today as “the standards” will certainly be obsolete
within a few years.

Many organizations have made the mistake of early and excessive standardization and a large
number still keep making it. There is much yet to invent in the computer hardware and software
world. Insistence on one system as the standard at this point would be quite premature.

What does this mean? Well, a lot of bad software got into the market and stayed there
because there were no economic consequences for producing a poor product. People
bought it anyway. Users were (and still are) largely clueless about software quality. They have
little idea of what to look for, what questions to ask and how to separate fact from fiction. The
best marketed programs and software systems get the most air time and become de facto
“standards” even though there is little unbiased, trustworthy evidence on which to make an
informed buying decision.

Another problem that occurred was “disposable code”. Under-estimates of system longevity led
to a “just get it working & ship it” approach to software development. Why plan more than a
few years ahead when there’s no budget to do that? Project managers get paid and promoted

C2010 Dr. Steve G. Belovich 17 of 20

based upon short-term metrics. None of them get much credit for designing systems that work
too far into the future. In fact, there are financial incentives not to do that. An “upgrade” or
”fix” can always be sold at a later date – long after the customer has securely chained themselves
to the current software version and cannot easily change horses.

Buying software places obligations and constraints on future buying decisions. Many
companies, having standardized on a certain IT system merely because the site license was
cheap, found that the cost to convert all their data to a new IT system far exceeded the original
purchase price of the old IT system. Choosing software merely on the basis of acquisition cost
and ignoring future operational dependency and flexibility is arguably one of the biggest
mistakes that can be made.

C2010 Dr. Steve G. Belovich 18 of 20

6.0 Sidebar #2: Software Engineers Vs. Programmers

In the US, there is no universally-recognized, formal certification
process required to be a programmer. Some programmers are
graduates of CIS (Computer and Information Science) programs,
some are engineers and many are neither. Novell and Microsoft
have tried to create proprietary certification with their CNE
(Certified Network Engineer) and MCSE (Microsoft Certified
System Engineer) training.

Many states have made such titles illegal because they mislead the
public on who is really an engineer. Graduates of such training are
not required to have an ABET-accredited engineering degree or a PE
(Professional Engineer) license so they cannot be called engineers. This effort is in the public
interest because software impacts public safety. By way of information, Ohio has rendered the
MCSE and CNE titles unusable unless you are an actual engineer. Nevada also has strict
engineer title laws.

The “science” of computer science has a long way to go. Few useful software development
paradigms exist and the graduates are not adequately trained in their use or are even aware of
their existence. The professors themselves are ignorant of current software development
practices and have little to offer their students in the way of helpful suggestions. Having been a
Computer Engineering professor at a large university, I can personally attest to the appalling lack
of understanding of software engineering issues on the part of a few of my former colleagues.

Some organizations, such as Carnegie-Mellon’s SEI (Software Engineering Institute) are
combating this widespread ignorance. Local SPIN groups (Software Process Improvement
Network), an outgrowth of CMU’s SEI, are also assisting in this effort. However, as long as
time-to-market issues dominate software development (rather than safety or correctness), there
will be little incentive to change.

Software engineers, on the other hand, have a lot more science and technology background than
do programmers or computer science majors. Because they are degreed engineers, they have the
ABET-approved engineering core which includes physics, chemistry, math, engineering design,
etc. Software engineers, at the graduate level, also learn management and other business aspects
of the software design and production process.

Software engineering programs are still nascent, but they are gaining traction as employers
realize that programmers alone cannot get the job done. It is the beginning of wisdom when a
software developer learns the difference between getting a program to work – and getting it right.
Experience has verified that a team of engineers is generally better to use for a large software
project where reliability and flexibility is required.

C2010 Dr. Steve G. Belovich 19 of 20

7.0 What to Do?

There are no quick fixes to this growing problem. One thing, however, is almost certain. The
growing body of lawsuits on software security, safety and reliability issues will lead to federal
and/or state regulation. While no one welcomes this prospect, it is due to the inability and
unwillingness of the software industry to police itself. The identical thing occurred with the
automobile industry in the early 1900s. Now, we have the NTSB (National Transportation and
Safety Board) and other organizations charged with ensuring travel safety.

In the meantime here are some helpful suggestions which, if carefully followed, will reduce your
risk.

1. Recognize that desktop technology is not secure and was never intended nor designed to
be secure. So, do not deploy critical applications on such systems. Just don't do it. The
desktop is best suited to serve as an interface to a centrally-managed, secure application
using a very thin-client architecture.

2. If something is available via a web browser, it can be hacked. All web browsers on
desktop operating systems are vulnerable. So, do not allow browser-based access to
anything critically important. Use a thin client like XLIB for desktop to support a
centrally-managed GUI rather than a browser.

3. Understand that your network will always be polluted to some extent. The TCP/IP
protocol is flawed because it permits challenge/response without authentication. So, it
will always be possible to do remote foot-printing, scanning and enumeration – which are
the three essential steps in the hacking process. Proper firewall configuration – and the
use of only “stateful” firewalls – will help a lot but cannot completely prevent
unauthorized traffic.

4. Deploy critical applications only on secure O/S platforms. If the O/S itself is not secure,
the application deployed on top of it cannot be secure.

5. Spend the bucks to design new systems right the first time. It is never cheaper to redo.
Also, the opportunity cost of not having the system deployed properly can be huge.

6. Plan for “rolling upgrades” with system segmentation. Use multi-vendor standards for
GUI, database access and network communication. That way, you can upgrade portions
of your system without disturbing the rest of it. Multi-vendor standards ensure that you
have alternative sources for critical pieces of software. If you cannot get access to your
data unless it’s through a single-vendor’s proprietary interface, shy away from that.

7. Keep the architecture flexible so it can adapt as your business needs change. You want
your IT systems to enable your organization - not limit your growth.

8. Choose stuff because it works and it’s reliable – not because it’s cheap or convenient. The
money that you save will far outweigh the little extra in up-front cost.

9. Call (330-659-6300 x221) or email (Steve.Belovich@IQware.us) us at IQware because
solving this issue is what we do. We can help!

C2010 Dr. Steve G. Belovich 20 of 20

mailto:Steve.Belovich@IQware.us

	1.0	IT Security Overview
	2.0 A Very Quick History of Computer & O/S Technology
	2.1	The 1950s
	2.2	The 1960s and 1970s
	2.3	Programmers Are Born

	3.0 Secure System Requirements: The Reference Monitor
	5.0 Sidebar #1: Evil Software Development
	6.0 Sidebar #2: Software Engineers Vs. Programmers

	7.0 What to Do?

